Multi-System Installs

How to Stack Sol-Ark 12K Systems for More Power

By Dylan Hillman

- Mission:
 - A Veteran owned engineering company dedicated to helping families be less dependent on our vulnerable Power Grid in an affordable way
- No customer returns in 7 years of business
- Sol-Ark 8K/12K: most efficient & affordable Solar Storage inverter in the world

2020 Semi-Finalist

5/4/2020

www.Sol-Ark.com

2

Agenda

- Welcome
- Why Stack Systems?
- Master Slave Assignment
- Wire Diagrams
- Programming
- FAQs Support gets about Paralleling

22

34

53

- How to buy
- Q&A

Why Stack?

- More Solar Panels
- More Power
- Back up the whole house
- True 3 phase 208V battery backup

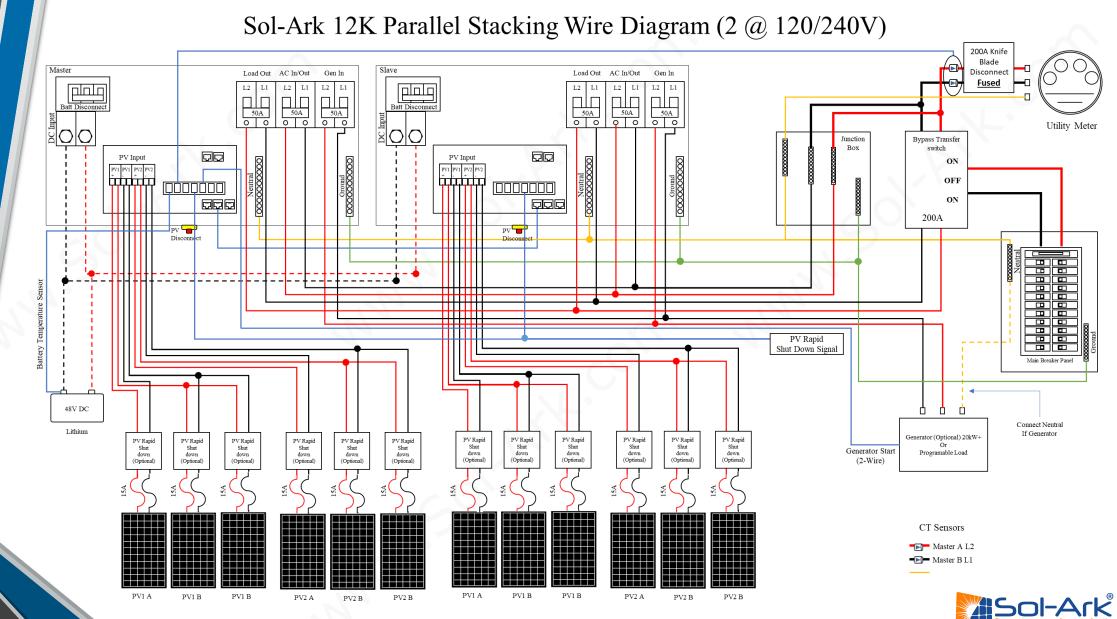
Stacking @ 120V/240V

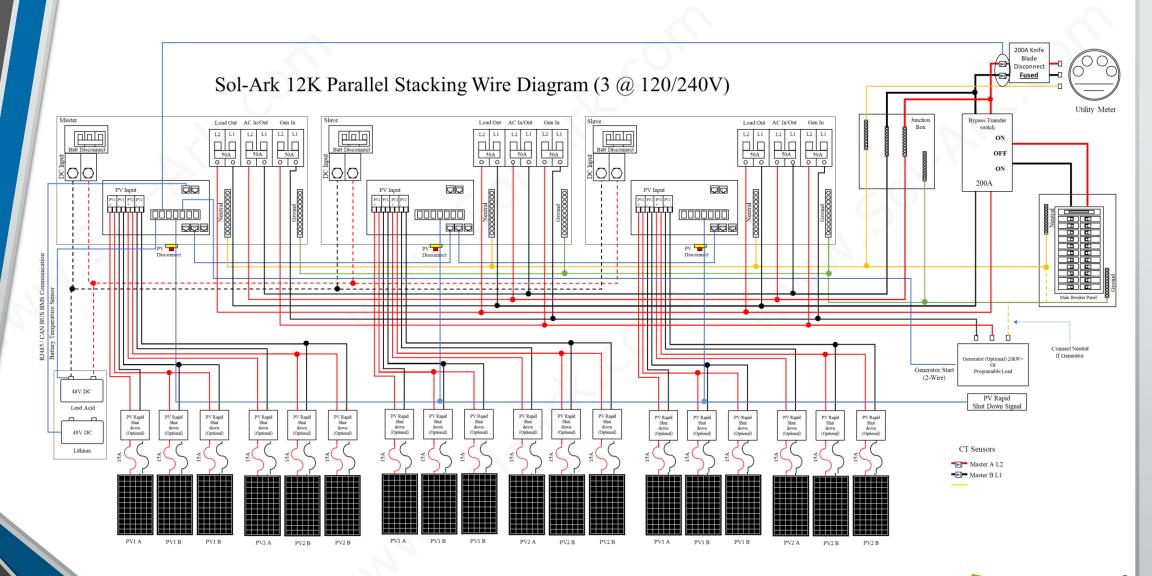
Sol-Ark

- 1-8 12Ks
- Continuous power stacks linearly
- Peak power per system when stacked:
 - 2 systems = 18KWpk (36kWpk total)
 - 4 = 16KWpk (64kWpk total)
 - 6 = 14KWpk (84kWpk total)
 - 8 =12KWpk (96kWpk total)

Stacking @ 120V/240V

	Continuous On Grid (kW)	Continuous Off Grid (kW)		Peak 5sec (kW)
1	9	8	12	20
2	18	16	24	36
3	27	24	36	51
4	36	32	48	64
5	45	40	60	75
6	54	48	72	84
7	63	56	84	91
8	72	64	96	96




Master Slave Assignment @ 120V/240V

Modbus Address = 1-8 (cannot skip numbers)

Energy Insurance for your family

Stacking @ 120V/208V

- 1*,2,3,6,9 12Ks
- Continuous power stacks linearly
- Peak power per system when stacked:
 - 2 systems = 18KWpk (36kWpk total)
 - 4 = 16KWpk (64kWpk total)
 - 6 = 14KWpk (84kWpk total)
 - 8 =12KWpk (96kWpk total)

Stacking @ 120V/208V

	Continuous On Grid (kW)	Continuous Off Grid (kW)	Pass Through (kW)	Peak 5sec (kW)
1*	9	8	12	20
2**	18	16	24	36
3	27	24	36	51
4	NA	NA	NA	NA
5	NA	NA	NA	NA
6	54	48	72	84
7	NA	NA	NA	NA
8	NA	NA	NA	NA
9	81	72	108	108

* 2 legs only **3 legs but some unbalanced (4.8KW/4.8KW/8.4KW)

Master Slave Assignment @ 120V/208V

Modbus Address = 1-2 or 1-3

Phase: A B C

CT Sensors: 2 on Master A and 1 on Master B (L2) (Auto-learn CT's only does direction, not line)

This Photo by Unknown Author is licensed under CC BY-SA

Master Slave Assignment @ 120V/208V

Modbus Address = 1-6

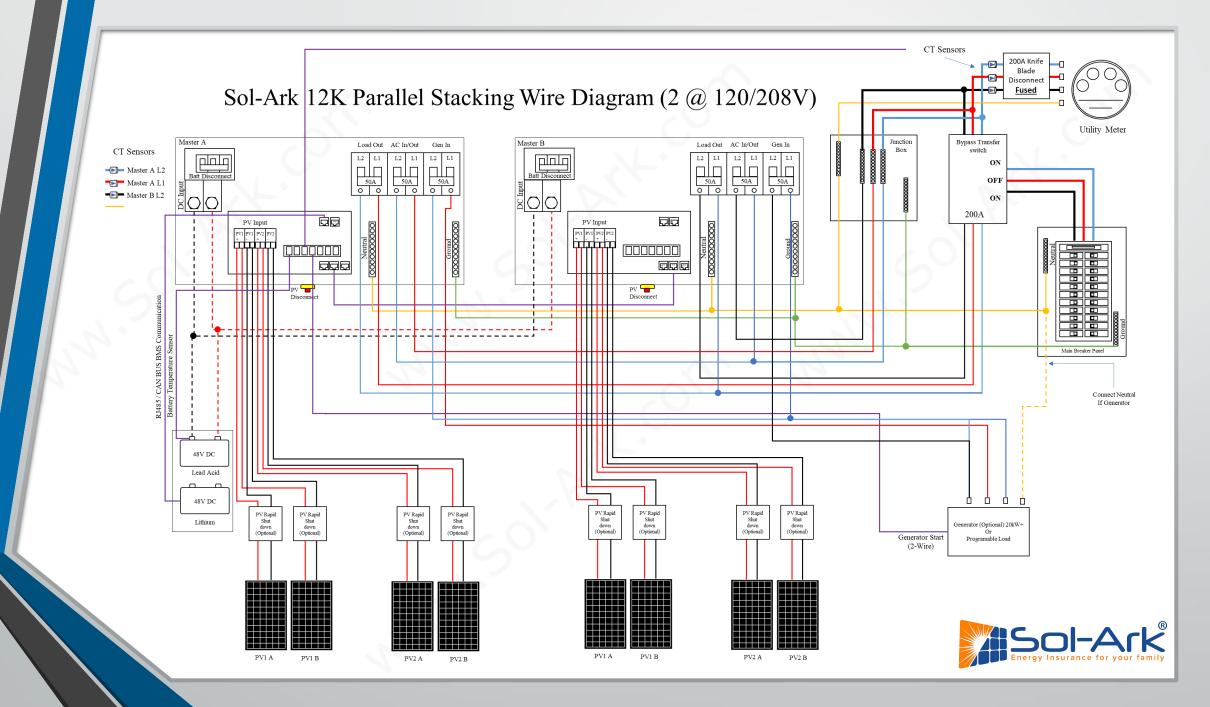
Phase: A B C

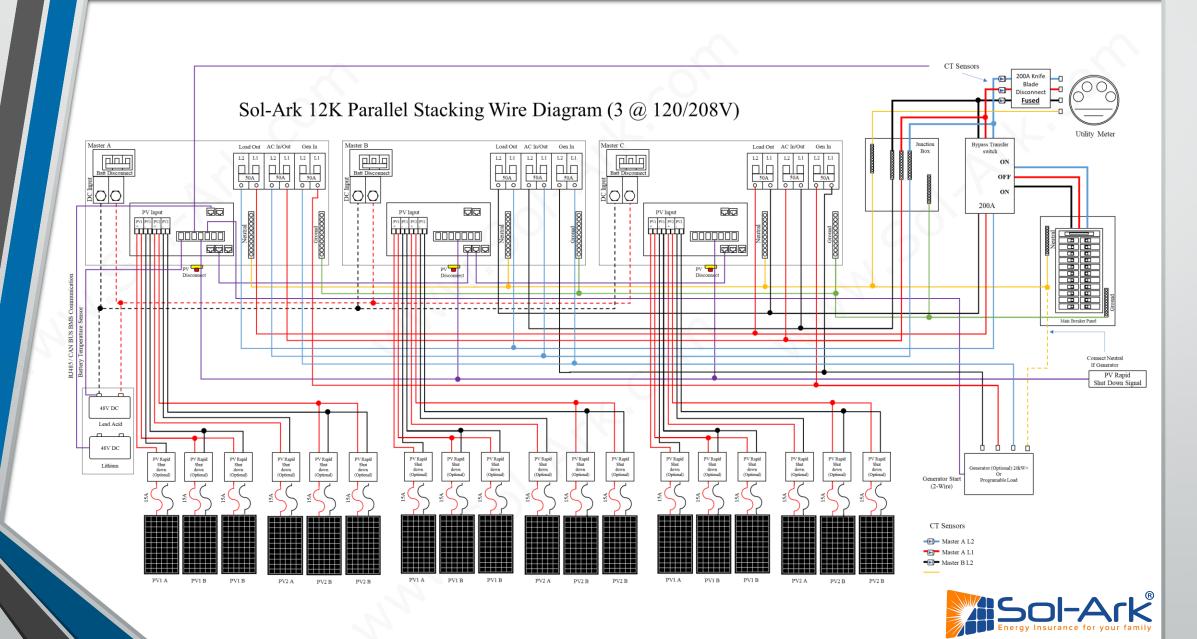
= Master

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Master Slave Assignment @ 120V/208V

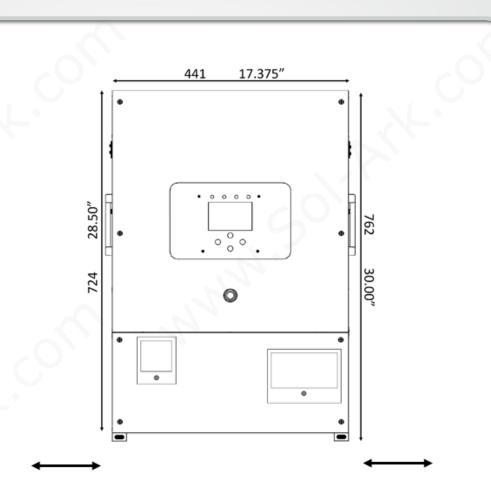
Sol-Ark Sol-Ark Sol-Ark Sol-Ark Sol-Ark Sol-Ark Sol-Ark Sol-Ark Sol-Ark -----2555 2002 3005 1005 1000 5455 235 1000 2 3 4 5 6 8 7 9 1


Modbus Address = 1-9


Phase: A B C

= Master

= Slave


This Photo by Unknown Author is licensed under CC BY-SA

System Layout

- 12" minimum distance between systems
- Indoor Installs Only

6" minimum clearance (12" if next to another system)

Solar Panels & Stacked Systems

- AC Coupling
 - 9.6kW per system on Load side
 - 7.6kW per system on Gen side
- DC Coupling
 - 16.5kW per system
 - 500V @ 18A / 450V @ 20A

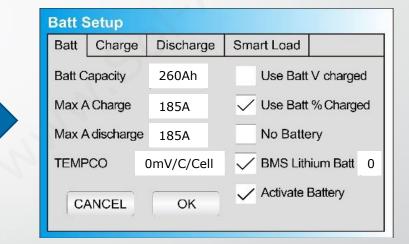
Large System Tips

- Blue board 4ms
 - Replaceable relays
- Generators must be connected to all systems in parallel in the same way
- Bus Bars for battery bank
 - Parallel connectors need to be able to accommodate max discharge
- Joining of Lines
 - AC distribution panel / junction boxes / Multitap

How many Batteries do you need given your loads and system count?

- Minimum battery for max inverter output
 - 200Ah @ 48V & 1C (some lithium batteries)
 - 400Ah @ 48V & 0.5C (most chemistries can manage this)
- Minimum battery for off-grid operation
 - 50Ah @ 48V Per system
- Maximum battery size
 - 9900Ah @ 48V Total

How to program the Sol-Arks for your battery bank


- Batt Capacity: Ah of your battery bank (Master A Only)
 - = Ah of each string of batteries in parallel
 - Set as the whole bank on Master
- Max A Charge (Divide between systems)
 - = what the spec sheet for your battery says
- Max A Discharge (Divide between systems)
 - = what the spec sheet for your battery says
- Tempco (Master A Only)
 - =-5mV/C/Cell for lead acid batteries, 0 for lithium

Batt	Charge	Discharge	Smart Load			
Batt C	apacity	400Ah	Use Batt V charged			
Max A	Charge	40A	Vse Batt % Charged			
Max A discharge		60A	No Battery			
TEMF	oov	-5mV/C/Cell	BMS Lithium Batt 01			
	ANCEL	ОК	Activate Battery			

Battery Comms: Let the Battery Program the Sol-Ark

	LiBms:05
Battery Voltage: 52.80V	
Battery Current: 0A	Battery charge Voltage: 56.7V
Battery Temp.: 21.0C	Charge current limit: 260A
SOC = 93% SOH = 100%	Discharge current limit: 260A
Nominal_Cap: 260 Ah	
Remaining_Cap: 260 Ah	

Discharge

49.0V

30%

60A

Smart Load

Absorption V

Equalization V

OK

56.7V

56.7V

56.7V

90 days

2.0 hours

Float V

Batt Setup

Charge

40A

Gen Charge 🧹 Grid Charge

CANCEL

Start V 49.0V

Start % 30%

Batt

- Dynamic Values from BMS: (Master A Only)
 - Charge Voltage, Max Charge Amps, Max Discharge Amps, Temp, SOC.
 - Divides Max Amps per parallel inverter automatically
 - System uses lower of programmed Max Amp Charge/Discharge
 - May: Discover & Blue Ion, July: Fortress

How to program the Sol-Ark for your battery bank Continued

- Shutdown V / % (Master A)
 - When the inverter stops AC output
- Low Batt (Master A)
 - Highlights battery icon in yellow
- Restart (Master A)
 - When AC output resumes is shutdown happened
- Batt Resistance (Master A)
 - Accounts for voltage drop under load
- Batt Charge Efficiency (Master A)
 - Depends on type of battery, LFP and Carbon AGM are usually 99%
- Master #1 copies settings to parallel inverters

	lischarge	Smart Load	
46.0V	20%	Batt	25mOhms
47.5V	35%		
52.0V	50%	Efficiency	99.0%
v 47	.0V		
		2	
	47.5V 52.0V / 47.	47.5V 35% 52.0V 50%	47.5V 35% Batt Resistance 52.0V 50% 47.0V

How to program the Sol-Ark for your battery bank Continued

- Batt Empty V (Master A only)
 - Used to prevent damage to inverter and battery when off grid
 - Determines "floor" for battery SOC calculations
 - Typically 47V for Lead Acid
 - Not used with battery communication

Batt	Ch	arge	Discharge	Smart Load	
Shutdo	own	46.0V	20%	Batt Resistance	25mOhms
Low B	att	47.5V	35%		
Restart 52.		52.0V	50%	Batt Charge Efficiency	99.0%
Batt E	mpty	v Z	17.0V		
		~		r	
		CANC	EL]	ОК	

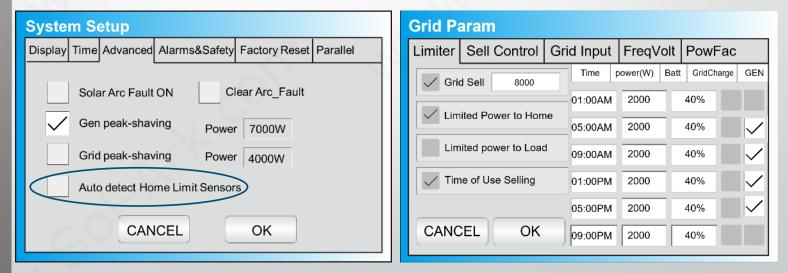
Gen Charging Notes

- Gen Connected to Grid input
 - Must check box in Sell Control Tab
- To improve Generator Connectivity
 - Set to General Standard Mode
 - Widen Frequency Range to 55hz-65hz

Grid Pa	iram			
Limiter	Sell Control	Grid Input	FreqVolt	PowFac
Ger	neral Standard	D	Grid Reconne	ct Time 60s
UL	1741 & IEEE1547		Powe	r Factor 1.000
CA	Rule 21	G	EN connect	to Grid input
UL	1741SA			
			CANCEL	ј ок

Grid Param								
Limiter Sell Control Grid Input FreqVolt PowFac								
Grid Frequency 50Hz Protect Param								
60Hz	Grid Vol High 264.0V							
	Grid Vol Low 211.0V							
Grid Type 220V Single Phase	Grid Hz High 60.5Hz							
120/240V Split Phase	Grid Hz Low 45.0Hz							
120/208V 3 Phase	CANCEL							

Grid/Generator Peak Shaving (Gen-Assist)

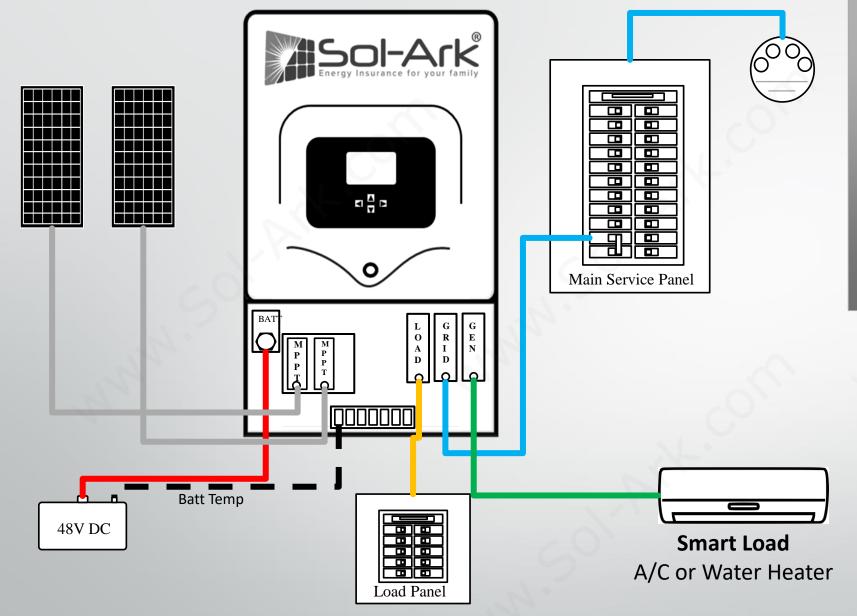

- Use Battery to Clip Peaks in Power Usage
- Perfect for small generator situations and off-grid
- CT's needed for Grid Shaving
- Set up on Master A only

Grid/Gen Peak Shaving

Actual Usage

Cannot Auto detect Grid CT's without batteries

TOU to Home + Grid Sell Lithium Batt


- Set on Master A Only
- PV will charge batteries to 100% & <u>excess PV will be</u> sold to Grid
- Up to 2,000W from the battery to zero the whole home meter (Total Power out of batteries from all systems)
- Batteries will discharge to a maximum of 40% S.O.C while grid is present (will discharge further if grid outage)

Grid Param

Limiter	Sell	Control	Gri	d Input		FreqV	olt	PowFac	
Grid Sell 8000			Time	po	ower(W)	Batt	GridCharge	GEN	
		01:00AM	I	2000		40%			
	Limited Power to Home		05:00AM	I	2000		40%		
Lim	Limited power to Load		09:00AM	I	2000		40%		
Tim	Time of Use Selling			01:00PM	I	2000		40%	
				05:00PM	I	2000		40%	
CANC	EL	ОК		09:00PM		2000		40%	

Batt Ch	arge	Discharge Smart Loa		5
Shutdown	46.0V	20%	Batt Resistance	25mOhms
Low Batt	47.5V	35%		
Restart	52.0V	50%	Batt Charge Efficiency	99.0%
Batt Empty	/ V 4	7.0V		
	,	ų,		
	CANC	EL	OK	

Example Settings

Batt	Setup				
Batt	Charge	Discharge	Smart	Load	
with (Smar	ected, Use Gr Grid Limiter so t Load OFF f t Load ON B		charging ne 80% 90%	Solar	inverter input Power(W) rid Connected

Smart Load Output (Per 12K)

- Automatic Load Shedding controlled by SOC and/or PV Production for On Grid or Off Grid
- Reduces battery size 10-40%. Waits for batteries to be charged before using PV for big appliances.
- Programming PV watts = 0 will turn on Smart Load if Grid present
- Uses AC coupling input

Stacking FAQs

- Which system do the CT sensors connect to?
 - 120V/240V installs = only Master 01
 - 120V/208V installs = 2 on Master A, 1 on Master B
- Can I use separate battery banks?
 - Nope, all batteries must be connected to all parallel systems
- Battery Temperature Sensor Placement
 - Tape to the side of battery, or in between batteries
 - Note sensor has no polarity
 - Master A Only

Where to get more information?

- <u>www.sol-ark.com/support</u> --> documents, manuals etc.
- YouTube channel
- Contact us anytime
- 972-575-8875

Benefits of being a Sol-Ark customer

- 7 day/week Support worth \$\$ in hourly, as a thank-you for being our customer
- Fast delivery lead times 7-10 business days
- Flexible network adding new distributors and accepting more

Northwestern Passage 907 Solar Canada Hudson Bay Labra MB Hakai Energy Solutions Next Energy, Solution Solar Assist Solar PHOTON ELECT Wing Solar & Wood Enerat United Stat Sunlight-To-The Rescue... Golden Valley Solar Solar Source GA Harvest Solar Gulf Electrical Gulf of Mexico Mexico Solar Plus Clean Solar System Guatema Caribbean Sea Tecnosol Nicaragua Venezuela 🔒 Log In 🖽 Sign Up DISTRIBUTORS: Sol-Ark Sol-Ark ~ Products Where To Buv ~ Support ~ Reviews/Blog ~

Purchasing Sol-Arks

- Blue pins on our website map carry Sol-Ark
- Yellow pins are installers
- Join our Network

Are We Still Open?

- Operational
- Adding production and inventory
- Webinars every Friday @ 12:00PM EST / 11:00AM CST

